Deposition and biokinetics of inhaled nanoparticles

"Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized...

Full description

Bibliographic Details
Main Authors: Geiser, Marianne, Kreyling, Wolfgang G.
Institution:ETUI-European Trade Union Institute
Format: TEXT
Language:English
Published: Particle and Fibre Toxicology 2010
Subjects:
Online Access:https://www.labourline.org/KENTIKA-19173211124919914939-Deposition-and-biokinetics-of-.htm
_version_ 1771659899945615362
author Geiser, Marianne
Kreyling, Wolfgang G.
author_facet Geiser, Marianne
Kreyling, Wolfgang G.
collection Library items
description "Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized particles in comparison to micrometer sized ones. The presented approach ranges from inhaled particle deposition probability and retention in the respiratory tract to biokinetics and clearance of particles out of the respiratory tract. Particle transport into the blood circulation (translocation), towards secondary target organs and tissues (accumulation), and out of the body (clearance) is considered. The macroscopically assessed amount of particles in the respiratory tract and secondary target organs provides dose estimates for toxicological studies on the level of the whole organism. Complementary, microscopic analyses at the individual particle level provide detailed information about which cells and subcellular components are the target of inhaled particles. These studies contribute to shed light on mechanisms and modes of action eventually leading to adverse health effects by inhaled nanoparticles. We review current methods for macroscopic and microscopic analyses of particle deposition, retention and clearance. Existing macroscopic knowledge on particle biokinetics and microscopic views on particle organ interactions are discussed comparing nanometer and micrometer sized particles. We emphasize the importance for quantitative analyses and the use of particle doses derived from real world exposures."
format TEXT
id 19173211124919914939_9c1c473254554ffbbf4f7a9ece7077c0
institution ETUI-European Trade Union Institute
is_hierarchy_id 19173211124919914939_9c1c473254554ffbbf4f7a9ece7077c0
is_hierarchy_title Deposition and biokinetics of inhaled nanoparticles
language English
physical 17 p.
Digital
publishDate 2010
publisher Particle and Fibre Toxicology
spellingShingle Geiser, Marianne
Kreyling, Wolfgang G.
body retention
bronchopulmonary clearance
chemical analysis
inhalation toxicity
lung deposition
nanomaterials
Deposition and biokinetics of inhaled nanoparticles
thumbnail https://www.labourline.org/Image_prev.jpg?Archive=114155793233
title Deposition and biokinetics of inhaled nanoparticles
topic body retention
bronchopulmonary clearance
chemical analysis
inhalation toxicity
lung deposition
nanomaterials
url https://www.labourline.org/KENTIKA-19173211124919914939-Deposition-and-biokinetics-of-.htm